Forgot password? New user? Sign up
Existing user? Log in
∫−∞∞xe2xe−e2x dx\large \int_{-\infty}^{\infty} {xe^{2x}e^{-{e}^{2x}} \, dx}∫−∞∞xe2xe−e2xdx
The above Integral can be expressed as −γa,-\dfrac{\gamma}{a}, −aγ,
where γ\gammaγ denotes the Euler-Mascheroni constant γ=limn→∞(−lnn+∑k=1n1k)≈0.5772.\displaystyle \gamma = \lim_{n\to\infty} \left( - \ln n + \sum_{k=1}^n \dfrac1k \right) \approx 0.5772 .γ=n→∞lim(−lnn+k=1∑nk1)≈0.5772.
Find a aa.
Problem Loading...
Note Loading...
Set Loading...