Let \( \{ x _n \} \) be a sequence defined such that \({ x }_{ k+1 }={ { x_{ k } }^{ 2 } } +{ x }_{ k }\) with \(x_1 = \frac 1 2 \).

Find the greatest integer less than or equals to the expression below.

\[ \large \frac { 1 }{ { x }_{ 1 }+1 } +\frac { 1 }{ { x }_{ 2 }+1 } + \ldots + \frac { 1 }{ { x }_{ 100 }+1 } \]

×

Problem Loading...

Note Loading...

Set Loading...