A crazy physicist has discovered a new particle called an omon. He has a machine, which takes two
omons of mass a and b and entangles them; this process destroys the omon with mass a, preserves the
one with mass b, and creates a new omon whose mass is 1/
2
(a + b). The physicist can then repeat the
process with the two resulting omons, choosing which omon to destroy at every step. The physicist
initially has two omons whose masses are distinct positive integers less than 1000. What is the maximum
possible number of times he can use his machine without producing an omon whose mass is not
an integer?

×

Problem Loading...

Note Loading...

Set Loading...