A circle \(S=0\) passes through the point of intersection of two circles: \[\displaystyle{{ S }_{ 1 }:\quad { x }^{ 2 }+{ y }^{ 2 }-3x+4y+5=0\\ { S }_{ 2 }:\quad { x }^{ 2 }+{ y }^{ 2 }-4x+3y+5=0}\]

Circle \(S=0\) also cuts the circle \({ S }_{ 3 }:\quad { x }^{ 2 }+{ y }^{ 2 }=4\) orthogonally.

Compute the value of length of tangent from origin to the circle \(S=0\) ?

×

Problem Loading...

Note Loading...

Set Loading...