\[\displaystyle\lim _{ n\rightarrow \infty }{ \displaystyle\int _{ 0 }^{ 1 }{ \cdots \displaystyle\int _{ 0 }^{ 1 }{ f\left( \frac { n }{ \displaystyle\sum _{ k=1 }^{ n }{ \frac { 1 }{ { x }_{ k } } } } \right) g\left( \sqrt [ n ]{ \displaystyle\prod _{ k=1 }^{ n }{ { x }_{ k } } } \right) d{ x }_{ 1 }\cdots d{ x }_{ n } } } } \]

Let \( f,g:[0,1]\rightarrow \mathbb{R}\) be two continuous functions such that the limit above is equal to \[ Af(B)g(Ce^{-D}) \; , \]

where \(A,B,C\) and \(D\) are non-negative integers. Find \(A+B+C+D\)

×

Problem Loading...

Note Loading...

Set Loading...