$\frac{dy}{dx}+\frac{y}{x}=\ln x \times y^{2}$

Let $y=f(x)$ be a solution to the above differential equation such that $f(1)=1$.

Given that $f(x)=\dfrac{a}{x^{b}\left(c-\ln^{d}x\right)}$ for positive real numbers $a,b,c$ and $d$, find $a+b+c+d$.

×

Problem Loading...

Note Loading...

Set Loading...