Forgot password? New user? Sign up
Existing user? Log in
f(x)=limn→∞⌊x⌋+⌊2x⌋+⌊3x⌋+⋯+⌊nx⌋n2\large f(x) = \lim_{n\to\infty} \dfrac{\lfloor x\rfloor+\lfloor 2x\rfloor+\lfloor 3x\rfloor+\cdots +\lfloor nx\rfloor}{n^2}f(x)=n→∞limn2⌊x⌋+⌊2x⌋+⌊3x⌋+⋯+⌊nx⌋
Let f(x)f(x)f(x) be defined as above and AAA be the area bounded by f(x)f(x)f(x) and y=x2y=x^2y=x2. Then find ∫01/Af(x) dx\displaystyle\int_{0}^{1/A} f(x) \, dx∫01/Af(x)dx.
Problem Loading...
Note Loading...
Set Loading...