If \(2+i\sqrt3\) is root of the equation \(x^2+px+q=0\), where \(p\) and \(q\) are real, then find \(\left \lfloor \dfrac {\lvert p\rvert+\lvert q\rvert}2 \right \rfloor\).

Enter 0, if you think multiple answers are possible.

**Notations:**

- \(i = \sqrt {-1}\) denotes the imaginary unit.
- \(\lfloor \cdot \rfloor\) denotes the floor function.
- \(| \cdot |\) denotes the absolute value function.

×

Problem Loading...

Note Loading...

Set Loading...