# Imaginary Counting

**Discrete Mathematics**Level pending

Let \(1\leq a,b\leq 100 \) be positive integers. If \(i = \sqrt{-1} \), find the number of distinct ordered pairs \((a,b) \) that satisfy the equation \(i(i^a + i^b) = 2\).

Let \(1\leq a,b\leq 100 \) be positive integers. If \(i = \sqrt{-1} \), find the number of distinct ordered pairs \((a,b) \) that satisfy the equation \(i(i^a + i^b) = 2\).

×

Problem Loading...

Note Loading...

Set Loading...