\[\large \left|\left(\sqrt[2-i]{1+i}\right)^{3+i}\right| = \sqrt a e^{-\pi/b}\]

The expression above holds true for positive integers \(a\) and \(b\), where \(a\) is square free.

Find the value of \(63a^{3}b\).

**Notations**:

- \(i=\sqrt{-1}\) is the imaginary unit.
- \(e \approx 2.718\) is the Euler's number.
- \(| \cdot |\) denotes the absolute value function.

**Hint**: Euler's Formula is the core of this problem.

×

Problem Loading...

Note Loading...

Set Loading...