Let the number of all complex numbers \(z_1\) which satisfy \(z_1^{3}-\bar{z_1}=0\) be \(a\).

If \(\arg\left(\dfrac{z_2-2}{z_2+2}\right)=\dfrac{\pi}{4}\), then locus of \(z_2\) is \(|z_2-bi|=\sqrt{c}\).

Find \(a+b+c\).

×

Problem Loading...

Note Loading...

Set Loading...