Forgot password? New user? Sign up
Existing user? Log in
Consider the system of equations
y=2x1+x2y=3x2+x3y=4x3+x4y=5x4+x5y=6x5+x1. \begin{aligned} y & = 2{x}_{1}+{x}_{2} \\ y & = 3{x}_{2}+{x}_{3} \\ y & = 4{x}_{3}+{x}_{4} \\ y & = 5{x}_{4}+{x}_{5} \\ y & = 6{x}_{5}+{x}_{1}. \end{aligned} yyyyy=2x1+x2=3x2+x3=4x3+x4=5x4+x5=6x5+x1.
If all of the variables are integers, what is the minimum positive integer value of
(∑i=15xi)−y?\left(\sum_{i=1}^{5}{x}_{i}\right) - y ?(i=1∑5xi)−y?
Problem Loading...
Note Loading...
Set Loading...