If $\displaystyle \sum_{n=1}^\infty \dfrac1{n(n+1)(n+2)\cdots (n+6)} = \dfrac1a$, find $\dfrac a6$.

**Hint**: Generalize it for $\displaystyle \sum_{n=1}^\infty \dfrac1{n(n+1)(n+2)\cdots(n+k)}$.

×

Problem Loading...

Note Loading...

Set Loading...