A Weird Infinity Fractional Sequence ~ Inspired by Sourasish K (Part 2)

\[\large \dfrac{1}{4} + \dfrac{3}{4 \cdot 4} + \dfrac{3 \cdot 5}{4 \cdot 4 \cdot 8} + \dfrac{3 \cdot 5 \cdot 7 }{4 \cdot 4 \cdot 8 \cdot 12 } + \cdots = \, \]

  • A. \(\quad 2 \)
  • B. \(\quad \dfrac{1}{\sqrt{2}} \)
  • C. \(\quad \dfrac{1}{2} \)
  • D. \(\quad \dfrac{\sqrt{2}}{2} \)
  • E. \(\quad \dfrac{4}{2} \)
  • F. \(\quad \dfrac{2}{4} \)

Inspiration


Try another problem on my set! Let's Practice
×

Problem Loading...

Note Loading...

Set Loading...