Forgot password? New user? Sign up
Existing user? Log in
abcd+bcda0dcba+cbad0 \large{\begin{array}{cccccc} & & & a & b & c&d\\ +& & & b & c & d & a \\ \hline && & & & & \phantom0&\\ \end{array}} \qquad \qquad \large{\begin{array}{cccccc} & & & d & c & b &a \\ +& & & c& b & a & d \\ \hline && & & & \phantom0 &\\ \end{array}} +abbccdda0+dccbba0ad
If a,b,ca,b,ca,b,c and ddd are distinct single-digit positive integers so that the result of both additions is the same, find the number of possible quadruples (a,b,c,d)(a,b,c,d) (a,b,c,d).
See a harder version of this problem.
Problem Loading...
Note Loading...
Set Loading...