\[ \large{\begin{cases} x+ \lfloor y \rfloor+ \left \{ z \right \}=1.1\\ \lfloor x \rfloor+ \left \{ y \right \}+z=2.2 \\ \left \{ x \right \}+y+\lfloor z \rfloor=3.3 \end{cases}} \]

Let real numbers \(x\), \(y\) and \(z\) satisfy the system of equations above. Find the value of \(100 xyz\).

\[ \]

**Notations**:

- \( \lfloor \cdot \rfloor \) denotes the floor function.
- \( \lceil \cdot \rceil \) denotes the ceiling function.
- \( \{ \cdot \} \) denotes the fractional part function.

×

Problem Loading...

Note Loading...

Set Loading...