Integral Challenge!

Calculus Level 3

Given that \(\displaystyle f(x) = \int_1^x \dfrac{\ln t}{1+t} \, dt \) and \(f(x) + f\left(\dfrac1x\right) = k (\ln x)^2 \) for some constant \(k\), find the value of \(k\).

×

Problem Loading...

Note Loading...

Set Loading...