This holiday season, spark a lifelong love of learning. Gift Brilliant Premium

Integral of an Unknown Function

Let f(x)f(x) be a real-valued function continuous on [0,2]\left[0,2\right] such that f(x)=f(2x)f(x)=f(2x) for all xx. If

01f(x)dx=100,\int_0^1 f(x) dx = 100,

then what is the value of

02f(x)dx?\int_0^2 f(x)dx ?


Problem Loading...

Note Loading...

Set Loading...