Forgot password? New user? Sign up
Existing user? Log in
Let f(x)f(x)f(x) be a real-valued function continuous on [0,2]\left[0,2\right][0,2] such that f(x)=f(2x)f(x)=f(2x)f(x)=f(2x) for all xxx. If
∫01f(x)dx=100,\int_0^1 f(x) dx = 100,∫01f(x)dx=100,
then what is the value of
∫02f(x)dx?\int_0^2 f(x)dx ?∫02f(x)dx?
Problem Loading...
Note Loading...
Set Loading...