# Integrals...(4)

**Calculus**Level 4

Let \[y(x)=\int_{\frac{\pi^2}{16}}^{x^2}\frac{\cos(x) \cos(\sqrt{\theta})}{1+\sin^2(\sqrt{\theta})}d\theta\]

Value of \(\frac{dy}{dx}\) at \(x=\pi\) can be expressed as \(n\pi\) find find \(4n+1\)

Let \[y(x)=\int_{\frac{\pi^2}{16}}^{x^2}\frac{\cos(x) \cos(\sqrt{\theta})}{1+\sin^2(\sqrt{\theta})}d\theta\]

Value of \(\frac{dy}{dx}\) at \(x=\pi\) can be expressed as \(n\pi\) find find \(4n+1\)

×

Problem Loading...

Note Loading...

Set Loading...