\[ \begin{eqnarray} I_1 &=&\int \csc x \, dx = \int \dfrac{\csc x (\csc x - \cot x)}{\csc x - \cot x} \, dx = \ln | \csc x - \cot x | \\ I_2 &=&\int \csc x \, dx = \int \dfrac{-\csc x (\csc x + \cot x)}{\csc x + \cot x} \, dx = - \ln | \csc x + \cot x | \\ \end{eqnarray} \]

If both calculations above are correct, then \(I_1\) and \(I_2\) differ by a constant. Find \(I_1 -I_2\).

×

Problem Loading...

Note Loading...

Set Loading...