Forgot password? New user? Sign up
Existing user? Log in
∫−1313x41−x4arccos(2x1+x2) dx \large \int_{-\frac1{\sqrt3}}^{\frac1{\sqrt3}} \dfrac{x^4}{1-x^4} \text{arccos} \left( \dfrac{2x}{1+x^2} \right) \, dx ∫−31311−x4x4arccos(1+x22x)dx
The integral above can be expressed as
−πA[BC−πD−EFln∣G+HG−H∣], - \pi ^ A \left [ \dfrac B{\sqrt C} - \dfrac{\pi }{D} - \dfrac EF \ln \left |\dfrac{\sqrt G+ H}{\sqrt G - H} \right | \right ] , −πA[CB−Dπ−FEln∣∣∣∣∣G−HG+H∣∣∣∣∣],
where A,B,C,D,E,F,G,HA,B,C,D,E,F,G,HA,B,C,D,E,F,G,H are all positive integers with C,GC,GC,G square-free and E,FE, FE,F coprime.
Submit your answer as the sum A+B+C+D+E+F+G+H A + B + C + D + E + F + G + H A+B+C+D+E+F+G+H.
Problem Loading...
Note Loading...
Set Loading...