Inverse Sum Quintic

Calculus Level 5

\[\large\displaystyle\sum_{n=1}^{\infty} \left({\displaystyle\sum_{k=0}^nk^5} \right)^{-1} \]

If the value of the series above can be expressed as \[A\pi^2 + \sqrt B \pi \tan \left( \dfrac{\pi \sqrt C}2\right)+ D\] where \(A,B,C\) and \(D\) are integers, find the value of \(A+B+C+D\).


Inspiration.

×

Problem Loading...

Note Loading...

Set Loading...