Forgot password? New user? Sign up
Existing user? Log in
We are given the following system of equations
{11+2x2+11+2y2=21+2xy,x(1−2x)+y(1−2y)=29.\begin{cases} \frac{1}{\sqrt{1+2x^2}}+\frac{1}{\sqrt{1+2y^2}}=\frac{2}{\sqrt{1+2xy}}, \\ \sqrt{x(1-2x)}+\sqrt{y(1-2y)}=\frac{2}{9}. \end{cases}{1+2x21+1+2y21=1+2xy2,x(1−2x)+y(1−2y)=92.
If xxx can be expressed in the form a±bc,\frac{a\pm\sqrt{b}}{c},ca±b, where a,ba,ba,b and ccc are positive integers and bbb is not divisible by the square of any prime, find the value of a+b+c.a+b+c.a+b+c.
Problem Loading...
Note Loading...
Set Loading...