Forgot password? New user? Sign up
Existing user? Log in
True or False?
The infinite sequence ⌊1×2017⌋, ⌊2×2017⌋, ⌊3×2017⌋, ⌊4×2017⌋, …\big\lfloor 1\times \sqrt{ 2017 } \big\rfloor,\ \big\lfloor 2 \times \sqrt{ 2017 } \big\rfloor,\ \big\lfloor 3 \times \sqrt{ 2017 } \big\rfloor,\ \big\lfloor 4 \times \sqrt{ 2017 } \big\rfloor,\ \ldots⌊1×2017⌋, ⌊2×2017⌋, ⌊3×2017⌋, ⌊4×2017⌋, … contains infinitely many perfect squares.
Notation: ⌊⋅⌋ \lfloor \cdot \rfloor ⌊⋅⌋ denotes the floor function.
Problem Loading...
Note Loading...
Set Loading...