Let \(\mathbb{R}^2 \setminus \mathbb{Q}^2\) denote the Cartesian plane minus all points whose coordinates are both rational. Similarly, let \(\mathbb{R} \setminus \mathbb{Q}\) denote the irrational numbers. Are the spaces \(\mathbb{R}^2 \setminus \mathbb{Q}^2\) and \(\mathbb{R} \setminus \mathbb{Q}\) homeomorphic?

\(\)

**Hint**: Is \(\mathbb{R}^2 \setminus \mathbb{Q}^2\) path-connected?

×

Problem Loading...

Note Loading...

Set Loading...