Forgot password? New user? Sign up
Existing user? Log in
True or False?
If a,ba,ba,b and ccc are roots to the equation x3+x2+x=1x^3+x^2 + x=1x3+x2+x=1, and let Sn=an+bn+cnS_n = a^n + b^n + c^nSn=an+bn+cn, then there exists a positive integer nnn such that sgn(Sn)=sgn(Sn+1)=sgn(Sn+2)\text{sgn}(S_n) = \text{sgn}(S_{n+1}) = \text{sgn}(S_{n+2}) sgn(Sn)=sgn(Sn+1)=sgn(Sn+2).
Notation: sgn(x):={−1 if x<00 if x=01 if x>0\text{sgn}(x) := \begin{cases} \begin{array} {l l } -1 & \text{ if }x<0 \\ 0 & \text{ if }x=0 \\ 1 & \text{ if }x>0 \\ \end{array} \end{cases} sgn(x):=⎩⎨⎧−101 if x<0 if x=0 if x>0 denotes the sign function.
Problem Loading...
Note Loading...
Set Loading...