If \( x_1 , x_2 , x_3 , \ldots , x_n\) are any real number and n is any positiv integer, then

A. \(n \displaystyle\sum_{i = 1}^{n} x_i^2 < \left( \displaystyle\sum_{i=1}^n x_i\right)^2\)

B. \( \displaystyle\sum_{i = 1}^{n} x_i^2 \geq \left( \displaystyle\sum_{i=1}^n x_i\right)^2\)

C. \(\displaystyle\sum_{i = 1}^{n} x_i^2 \geq n\left( \displaystyle\sum_{i=1}^n x_i\right)^2\)

D. \( \displaystyle\sum_{i = 1}^{n} x_i \leq\left( \displaystyle\sum_{i=1}^n x_i\right)^2\)

E. None of these

×

Problem Loading...

Note Loading...

Set Loading...