It is impossible

\[ \large L=\displaystyle\lim_{x \to -1}\dfrac{\displaystyle\prod_{r=1}^{4n}(1+(-1)^{r+1}x^r)}{\displaystyle\prod_{r=1}^{2n}(1+(-1)^{r+1}x^r)^2} \]

Find the value of \(L\). \[\]

Notation: \( \dbinom MN \) denotes the binomial coefficient, \( \dbinom MN = \dfrac{M!}{N!(M-N)!} \).

×

Problem Loading...

Note Loading...

Set Loading...