Forgot password? New user? Sign up
Existing user? Log in
Given that x1+x+y1+y+z1+z=2,\dfrac{x}{1+x}+\dfrac{y}{1+y}+\dfrac{z}{1+z}=2,1+xx+1+yy+1+zz=2, where x,y,zx,y,zx,y,z are non-negative real numbers, what is the minimal value of xyzxyzxyz?
Problem Loading...
Note Loading...
Set Loading...