It looks symmetric...

Geometry Level 1

If cos4αcos2β+sin4αsin2β=1,\quad \quad \dfrac{\cos^4\alpha}{\cos^2\beta}+\dfrac{\sin^4\alpha}{\sin^2\beta}=1, find the value of sin4βsin2α+cos4βcos2α.\dfrac{\sin^4\beta}{\sin^2\alpha}+\dfrac{\cos^4\beta}{\cos^2\alpha}.

×

Problem Loading...

Note Loading...

Set Loading...