$\int _{ 0 }^{ \pi }{ \sum _{ k=0 }^{ \infty }{ \frac { \sin { \left( x\left( 2k+1 \right) \right) } }{ 2k+1 } } } dx= \frac{ \pi ^a } { b },$

where $a$ and $b$ are integers. Find $10a+b$.

Try my Other Problems

×

Problem Loading...

Note Loading...

Set Loading...