Forgot password? New user? Sign up
Existing user? Log in
If an antiderivative of x4ex\large x^4 e^x x4ex is in the form ex(Ax4−Bx3+Cx2−Dx+E) e^x\left(Ax^4 - Bx^3 + Cx^2 - Dx + E\right) ex(Ax4−Bx3+Cx2−Dx+E), where A,B,C,DA,B,C,DA,B,C,D and EEE are positive integers, find A+B+C+D+EA+B+C+D+EA+B+C+D+E.
Notation: e≈2.71828e \approx 2.71828e≈2.71828 is the Euler's number.
Problem Loading...
Note Loading...
Set Loading...