JEE-Advanced 2015 (19.C/40)

Algebra Level 4

Let ω1\omega \neq 1 be a complex root of unity, find the possible value(s) of nn such that (33ω+2ω2)4n+3+(2+3ω3ω2)4n+3+(3+2ω+3ω2)4n+3=0(3-3\omega+2\omega^2)^{4n+3}+(2+3\omega-3\omega^2)^{4n+3}+(-3+2\omega+3\omega^2)^{4n+3}=0 (1)1(2)2(3)4(4)5\begin{array}{ll} (1) \, 1 \quad \quad \quad \quad \quad \quad \quad \quad & (2) \, 2 \\ (3) \, 4 & (4) \, 5 \end{array} Note:

  • Submit your answer as the increasing order of the serial numbers of all the correct options.

  • For eg, if your answer is (1),(2)(1),(2), then submit 12 as the correct answer, if your answer is (2),(3),(4)(2),(3),(4), then submit 234 as the correct answer.

×

Problem Loading...

Note Loading...

Set Loading...