Forgot password? New user? Sign up
Existing user? Log in
Let f:R→Rf:\mathbb{R} \to \mathbb{R}f:R→R be a function defined by f(x)={⌊x⌋ ,x≤20 ,x>2f(x)=\begin{cases} \lfloor x \rfloor \ \ , \quad x \leq 2 \\ 0 \ \ , \quad x>2 \end{cases}f(x)={⌊x⌋ ,x≤20 ,x>2 If I=∫−12xf(x2)2+f(x+1) dxI=\displaystyle \int_{-1}^2 \frac{xf(x^2)}{2+f(x+1)}\, dxI=∫−122+f(x+1)xf(x2)dx, then find the value of 4I−14I-14I−1.
Problem Loading...
Note Loading...
Set Loading...