JEE Advanced Binomial Theorem 1

If \((x+a)^{100}=t_0+t_1+\cdots+t_{100}\) where \(t_r=\dbinom{n}{r}x^{n-r}a^r\), then \(\displaystyle \int\dfrac{2xdx}{\left (\displaystyle\sum_{r=0}^{50}(-1)^rt_{2r}\right )^2+\left (\displaystyle\sum_{r=0}^{49}(-1)^rt_{2r+1}\right )^2}=C+\dfrac{\alpha}{\beta(x^\eta+a^\eta)^\gamma},\)

If \(\beta\eta>0, GCD(|\alpha|,|\beta|)=1\), Calculate \(\alpha+\beta+\eta+\gamma\)

This is a part of My Picks for JEE Advanced 2
×

Problem Loading...

Note Loading...

Set Loading...