\(\left| \begin{matrix} 3{ x }^{ 2 } & x^{ 2 }+x \cos\theta +{ cos }^{ 2 }\theta & x^{ 2 }+x \sin\theta +{ \sin }^{ 2 }\theta \\ x^{ 2 }+x \cos\theta +{ \cos }^{ 2 }\theta & 3 \cos^{ 2 }\theta & 1+\frac { \sin2\theta }{ 2 } \\ x^{ 2 }+x \sin\theta+{ \sin }^{ 2 }\theta & 1+\frac { \sin2\theta }{ 2 } & 3{ \sin }^{ 2 }\theta \end{matrix} \right| =0\) are

Given the roots of the above determinant are \(f(\theta)\) and \(g(\theta)\). Evaluate \((f(\frac{\pi}{29}))^{2}+(g(\frac{\pi}{29}))^{2}\)

You may use calculator for the calculations.

Do like and share

Also see Refer to dictionary

×

Problem Loading...

Note Loading...

Set Loading...