Forgot password? New user? Sign up
Existing user? Log in
25!x(x+1)(x+2)⋯(x+25)=∑i=025Aix+i\dfrac{25!}{x(x+1)(x+2)\cdots(x+25)}=\sum_{i=0}^{25}\dfrac{A_{i}}{x+i}x(x+1)(x+2)⋯(x+25)25!=i=0∑25x+iAi
The equation above holds true for constants A1,A2,…,A25A_1, A_2, \ldots , A_{25} A1,A2,…,A25. Find the sum of digits of the number A24A_{24} A24.
Notation: !!! denotes the factorial notation. For example, 8!=1×2×3×⋯×88! = 1\times2\times3\times\cdots\times8 8!=1×2×3×⋯×8.
Problem Loading...
Note Loading...
Set Loading...