Forgot password? New user? Sign up
Existing user? Log in
Let α\alphaα and β\betaβ be the roots of equation px2+qx+r , p≠0px^2+qx+r \ , \ p \neq 0px2+qx+r , p=0. If p,q,rp,q,rp,q,r are in arithmetic progression and 1α+1β=4\frac{1}{\alpha}+\frac{1}{\beta}=4α1+β1=4, then the value of ∣α−β∣|\alpha-\beta|∣α−β∣ is :
Problem Loading...
Note Loading...
Set Loading...