\[\large S = \frac{1^{2}}{1\times3} + \frac{2^{2}}{3\times5} + \frac{3^{2}}{5\times7} + \cdots + \frac{500^{2}}{999\times1001}\]

For \(S\) as defined above, find the number of divisors of \( \left \lfloor S \right \rfloor\).

\(\)

**Notation:** \( \lfloor \cdot \rfloor \) denotes the floor function.

×

Problem Loading...

Note Loading...

Set Loading...