Forgot password? New user? Sign up
Existing user? Log in
Given that
∑i=12003i2=(2003)(4007)(334), \sum_{i=1}^{2003} i^2 = (2003)(4007)(334), i=1∑2003i2=(2003)(4007)(334),
find the value of xxx that satisfies
(1)(2003)+(2)(2002)+(3)(2001)…(2003)(1)=(2003)(334)(x). (1)(2003) + (2)(2002)+ (3)(2001) \dots (2003)(1) = (2003)(334)(x). (1)(2003)+(2)(2002)+(3)(2001)…(2003)(1)=(2003)(334)(x).
Problem Loading...
Note Loading...
Set Loading...