Jumble fumble functions.

Calculus Level 3

f and g are differential functions \[x^{2}g(f(x))*(f'(g(x))*(g'(x))=(1-2x^{2})*(g'(f(x)))*(f'(x))*(f(g(x)))\] \[x\epsilon R \] \[g(x)\gneq0,f(x)\leq0 \] \[\int_{0}^{k}f(g(x))dx=1-e^{-k^{2}} \] find \[ln\frac{g(f(3))}{g(f(2))} \]

×

Problem Loading...

Note Loading...

Set Loading...