Let \(f:\mathbb{R} \to \mathbb{R}\) be a function with derivative of any order. Suppose \(f\) has the property that \(f(x)+f(-x)=1\) \(\forall x\in \mathbb{R}\)

Find the value of \[\int_{-1}^1 x^2f(x)\, dx\]

**Bonus:** Under the property \(f(x)+f(-x)=k\) \(\forall x\in \mathbb{R}\) and some non-zero constant \(k\), find \[\int_{-a}^a x^{2n}f(x)\, dx\] where \(n\in \mathbb{Z}^+\) and \(a\in \mathbb{R}^+\)

×

Problem Loading...

Note Loading...

Set Loading...