\[\large{\int^{\frac{\pi}{4}}_{0} (\tan^{2016} (x)+\tan^{2014} (x))d(x-\frac{\lfloor x \rfloor}{1!}+\frac{\lfloor x \rfloor^{2}}{2!}-\frac{\lfloor x \rfloor^3}{3!}+\ldots)}\]

If the value of the integral above equals to \(\frac ab\) for coprime positive integers, find the value of \(a+b\).

×

Problem Loading...

Note Loading...

Set Loading...