Consider a source at infinity radiating a light of intensity I. A spherical ball is given a velocity V towards the direction of source. Find the distance travelled by the ball before coming momentarily to rest.

\[\textbf {Given:}\] \[\text{mass of the ball }m=\pi \text{ kg}\] \[\text{radius }R= 1\text{ m}\] \[\text{initial velocity } V=2\text{m/s}\] \[\text{intensity}I=1W/m^{2}\] \[\text{speed of light}c=3\times 10^{8}\text{ m/s}\]

\[\textbf {Given:}\] \[\text{mass of the ball }m=\pi \text{ kg}\] \[\text{radius }R= 1\text{ m}\] \[\text{initial velocity } V=2\text{m/s}\] \[\text{intensity}I=1W/m^{2}\] \[\text{speed of light}c=3\times 10^{8}\text{ m/s}\]

\[\textbf {Assumptions:}\] \[\text{1. The sphere is perfectly reflecting}.\] \[\text{2. Consider no rotational motion, only translational motion.}\] \[\text{3.All surfaces are smooth.}\]

\[\text{if answer can be given as } p\times 10^{8}\text{ m}\] Then find the integer p ?

×

Problem Loading...

Note Loading...

Set Loading...