Forgot password? New user? Sign up
Existing user? Log in
In ΔABC\Delta{ABC}ΔABC,
AB‾2+BC‾2+AC‾2=cosAsinBsinC+sinAcosBsinC+sinAsinBcosC.\overline{AB}^2+\overline{BC}^2+\overline{AC}^2 = \cos{A}\sin{B}\sin{C}+\sin{A}\cos{B}\sin{C}+\sin{A}\sin{B}\cos{C}.AB2+BC2+AC2=cosAsinBsinC+sinAcosBsinC+sinAsinBcosC.
If the area of the circumcircle of ΔABC\Delta{ABC}ΔABC can be represented as aπb\frac{a\pi}{b}baπ, where aaa and bbb are coprime positive integers, what is the value of a+b?a+b?a+b?
Note: This problem is posed by Kshitij J.
Problem Loading...
Note Loading...
Set Loading...