# L' Hospital won't save you this time!

**Calculus**Level 3

\[ \large \lim_{n\to\infty} \frac1n \sum_{k=1}^n \cos\left(\frac{k\pi}{2n}\right) \]

If the limit above equals to \(A \pi^B\) for integers \(A\) and \(B\), find the value of \(A\times B\).

\[ \large \lim_{n\to\infty} \frac1n \sum_{k=1}^n \cos\left(\frac{k\pi}{2n}\right) \]

If the limit above equals to \(A \pi^B\) for integers \(A\) and \(B\), find the value of \(A\times B\).

×

Problem Loading...

Note Loading...

Set Loading...