Forgot password? New user? Sign up

Existing user? Log in

Find the largest possible value of $x^3+y^3+z^3$ for real $x,\ y,\ z,$ such that $\begin{cases} xyz^2=-64y-128x\\ x^2yz=-32y-32z\\ 3xy^2z=128x-64z \end{cases}$

Problem Loading...

Note Loading...

Set Loading...