Find the least positive integer \(n\) for which there exists a set \( \{ s_1,s_2,\ldots,s_n \}\) consisting of \(n\) distinct positive integers such that

\[\left(1 - \dfrac{1}{s_1} \right) \left ( 1 - \dfrac{1}{s_2} \right) \left(1 - \dfrac{1}{s_3} \right) \ldots \left(1 - \dfrac{1}{s_n} \right) = \dfrac{42}{2010}\]

×

Problem Loading...

Note Loading...

Set Loading...