Forgot password? New user? Sign up
Existing user? Log in
Let α\alphaα, β\betaβ and γ\gammaγ be the real roots of the cubic equation x3−7x2+ax+50=0x^3-7x^2+ax+50=0x3−7x2+ax+50=0, and their absolute values be the roots of another cubic x3−bx2+cx−d=0x^3-bx^2+cx-d=0x3−bx2+cx−d=0. Find the minimum integral value of b+db+db+d.
Problem Loading...
Note Loading...
Set Loading...