Legendre's Theorem

Find the number of trailing zero's in \(2014! \)


Note:

\(2014! = 2014 \times 2013 \times 2012 \times 2011 \times...\times 2\times 1\)

or, \(n! = n\times (n-1)\times (n-2)...\times 3\times 2\times 1\)

×

Problem Loading...

Note Loading...

Set Loading...